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SUMMARY 
The economic value of the European Centre for Medium-Range Weather Forecasts (ECMWF) operational 

ensemble prediction system (EPS) is assessed relative to the value of a perfect deterministic forecast. The EPS has 
substantial relative value throughout the medium range. Probability forecasts derived from the EPS are of greater 
benefit than a deterministic forecast produced by the same model. Indeed, for many users, the probability forecasts 
have more value than a shorter-range deterministic forecast. Based on the measures used here, the additional 
information in the EPS (reflecting the uncertainty in the initial conditions) provides a benefit to users equivalent 
to many years’ development of the forecast model and assimilation system. 

The impact of ensemble size on forecast value is considered. The difference in performance between 
ensembles with 10 and with 50 members may appear relatively small, based on standard skill measures, yet the 
larger ensembles have substantial benefit to a range of users. Further increases in ensemble size may be. expected 
to provide additional value. 
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1. INTRODUCTION 

Ensemble predictions have been produced regularly at the European Centre for 
Medium-Range Weather Forecasts (ECMWF) since December 1992 (Palmer et al. 
1993; Molteni et al. 1996). The current operational Ensemble Prediction System (EPS) 
comprises a control forecast initialized from the operational analysis, plus 50 additional 
integrations initialized from perturbations to the control analysis (Buizza et al. 1998). 
All forecasts are made with the operational ECMWF model, but run at lower horizontal 
resolution (TL 159) than the single high-resolution deterministic forecast ( T L ~  19). The 
EPS complements the deterministic forecast by the provision of information about the 
probability distribution of future weather, based on uncertainty in the initial analysis. 

The performance of the EPS is routinely monitored using a range of verification 
measures. These assessments demonstrate that the EPS is a skilful prediction system. 
They also demonstrate the improvement of the enhanced EPS introduced in December 
1996 (Buizza et al. 1998). However, they do not explicitly address the question which 
is perhaps of most concern to potential users, viz. ‘Is the EPS worth paying for?’. 

Providing an answer to such a question is not straightforward. To obtain economic 
benefit from a forecast, a potential user must have alternative courses of action available, 
whose consequences will depend on the weather that occurs. If, by using forecasts, the 
user decides on actions he would not otherwise take, and benefits economically from 
these alternative actions, then the forecasts have been of value to the user (Murphy 
1994). Thus, a proper evaluation of the benefits of a forecast system to a particular user 
will involve not only the intrinsic skill of the forecasts, but also detailed knowledge of 
the user’s decision-making processes and the exact nature of the weather-sensitivity of 
that user’s operation. 

Several authors have investigated the relationship between skill and economic value 
of weather forecasts, either using specific examples (Roebber and Bosart 1996), or 
in general terms (Murphy and Ehrendorfer 1987; Wilks and Hamill 1995). Katz and 
Murphy (1997a) provided a comprehensive account of such research, and an extensive 
collection of references. These studies showed that the relationship between skill and 
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TABLE 1. COST A N D  LOSS FOR DIFFER- 
ENT OUTCOMES 

Occurs 
No Yes 

Take action No 0 L 
Yes C C + L - L l  

value is complex. Reliance on measures of skill alone may give a misleading impression 
of forecast value. Decisions on system configuration (for example, choice of optimal 
ensemble-size), may be different if the effect on economic value is considered rather 
than just the overall skill. Consequently, there are two reasons for studying the economic 
value of the EPS: to evaluate the potential benefit to users and to assess the impact of 
possible system changes in a context relevant to users. 

The present paper uses a simple decision-analytic model to examine the economic 
value of the EPS relative to that of a (hypothetical) perfect deterministic forecast. As 
examples of the operational EPS products, let us consider predicted probabilities of 850 
hPa temperature-anomaly over Europe exceeding certain thresholds. The decision model 
(introduced in section 2) is applied to the deterministic control-forecast (section 3) 
and to the EPS probability-forecasts (section 4) for these predictions for January and 
February 1998. The benefit of the EPS over the deterministic forecast is assessed in 
section 5 .  In section 6, the effect of ensemble size on forecast value is studied, using 
EPS precipitation-forecast data for winter 1996-97. Conclusions are drawn in section 7. 

The decision-analytic model discussed in the present paper has also been applied to 
seasonal forecast ensembles: the results have been discussed by Palmer ef al. (2000). 

2. THE COST-LOSS RATIO DECISION MODEL 

The economic value of weather forecasts has often been discussed in terms of 
so-called decision-analytic models (e.g., Murphy 1977; Katz and Murphy 1997b). A 
decision maker has a number of courses of action to choose from, and the choice is to 
some extent influenced by the forecast. Each action has an associated cost and leads to 
an economic benefit or loss depending on the weather outcome. The task is to choose the 
appropriate action which will minimize the expected loss. To emphasize the main points 
of the decision framework, let us consider here the simplest decision model, known as 
the static cost-loss model. 

Consider a decision maker who must choose either to take action or to do nothing, 
the choice depending exclusively on his belief that a given weather event X will occur 
or not. If the event occurs and no action has been taken then the decision maker incurs 
a loss L. Taking action incurs a cost C irrespective of the outcome; if the event occurs, 
the action prevents part of the loss (L 1 ). For example, X might be the occurrence of ice 
on roads and the action ‘to grit the roads’; C would be the cost of the gritting procedure 
and L would be the economic loss as a result of traffic delays and accidents on icy roads. 
The expense associated with each combination of action and occurrence of X is shown 
in Table 1 (the expense matrix). 

The decision maker wishes to pursue the strategy which will minimize his expense 
over a large number of cases. If only climatological information is available there are 
two options: either always take protective action or never protect. Always taking action 
incurs a cost C on each occasion and a loss L - L 1, on that fraction O of occasions when 
the event occurs, hence the average expense is C + O(L - L I) .  If action is never taken, 
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TABLE 2. CONTINGENCY TABLE FOR FORECAST AND OCCUR- 
RENCE OF BINARY EVENT 

Observed 
No Yes 

Forecast No a b a + b  
Yes C d c + d  

a + c = l - Z  b + d = Z  a + b + c + d = l  

the loss L occurs only when the event occurs, and the average expense is EL. Thus in the 
absence of information other than climatology, the optimal course of action is always to 
act if C + O(L - L 1 ) < OL, i.e. C < 0 L  1 ,  and never act otherwise; the expected expense 
is then 

(1) 

The provision of additional information in the form of forecasts may allow the 
decision maker to revise his strategy and reduce his expected expense. The reduction 
in expense is a measure of the value of the forecasts to the decision maker. 

Given perfect knowledge of the future weather, the decision maker would need to 
take action only when the event was going to occur. The expected expense would then 
be 

Eclimate = min{C + O(L - L1), OL}. 

Let us define the relative value V of a forecast system as the reduction in expense as 
a proportion of that which would be achieved by a perfect forecast: 

Eclimate - &orecast 

Eclimate - Epefiect 
V =  (3) 

Consequently, maximum relative value V = 1 will be obtained from a perfect forecast 
system, and V = 0 for a climate forecast. If V =- 0 then the user will benefit from the 
system. This definition gives an absolute upper bound to V and is a convenient reference 
level for the user: if a perfect knowledge of the future weather will save the user an 
amount S (over the use of purely climatological information) then the EPS with relative 
value V will save the user 1OOV% of S. 

3. SKILL AND RELATIVE VALUE FOR A DETERMINISTIC FORECAST-SYSTEM 

Consider first a deterministic forecast-system, that is each forecast is a simple 
statement either that a weather event X will occur or that it will not occur. The 
performance of the system over a period of time can be summarized in a contingency 
table which shows the fraction of correct and incorrect forecasts of a weather event 
occurring or not occurring (Table 2). 

The hit rate H is defined as the fraction of occurrences of the event which were 
correctly forecast, while the false-alarm rate F is the fraction of non-occurrences for 
which the event was (incorrectly) forecast. 

H = d / ( b  + d )  = d/0 
F = C / ( U  + C) = ~ / ( l  - 5). 

Note that both H and F are expressed in terms of the observed relative frequency 0 of 
the event; it is assumed that 0 > 0, i.e. that the event does occur in the sample. 
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TABLE 3. SKILL OF THE EPS CONTROL 6-DAY 
FORECASTS OF 850 hPa TEMPERATURE ANOMA- 

LIES OVER EUROPE 
Januarv and Februarv 1998 

Event F H KS 0 

T < -8 K 0.039 0.445 0.406 0.058 
T < -4 K 0.144 0.611 0.468 0.228 
T > +4 K 0.091 0.548 0.457 0.179 
T > +8 K 0.027 0.393 0.367 0.043 

From Table 2 and the expense matrix (Table l), the expected expense E for the 
forecast system is 

E = bL + CC + d(C + L - L1). (6) 

This may be written in terms of H and F using Eqs. (4) and (5) as 

E = F( l  -0)C - HZ(L1 - C) +0L.  (7) 

Substituting from Eqs. (l), (2), and (7) into Eq. (3), the relative value of the forecast 
system is 

min(a, 0) - Fa(1 - 0) + H0(l - a) - 0 
min(a, 0) - 0a 

V =  1 

where a = C/Ll, the cost of taking action expressed as a fraction of potential loss 
protected by the action, is known as the ‘cost-loss’ ratio. As a result, the relative value 
of a particular forecast-system depends on parameters a and 0, which are external to the 
system, and H and F which are model-dependent. 

Various measures of forecast skill may be derived from Table 2 (Wilks 1995; Stanski 
et al. 1989). Here, let us use the Kuipers score (KS) which has the desirable characteristic 
of equitability (Gandin and Murphy 1992), in that random or constant forecasts will 
score zero and perfect forecasts will have a score of 1. In the notation of Table 2, this 
may be written as 

ad - bc KS = = H - F .  
(a + c)(b + 4 (9) 

To illustrate the performance of a deterministic forecast-system, let us consider the 
control integration (the forecast from the unperturbed analysis). Table 3 shows results 
for the prediction of day-6 850 hPa temperature anomalies exceeding certain thresholds 
over Europe in January and February 1998. The control forecast has substantial skill for 
all thresholds. Forecasts for the smaller thresholds are more skilful than forecasts for 
the more extreme events, and positive anomalies appear more difficult to predict than 
negative anomalies. However, the question for potential users is ‘How does this skill 
translate to economic value of a forecast?’. 

For a given weather event and forecast system, 0, N and F are given, so that the 
relative economic value V of the forecast system depends only on a. Figure 1 shows V 
as a function of (II for the forecasts of the four events. Although, according to the scores 
in Table 3, the model is skilful, the usefulness to a decision maker depends greatly on 
his particular cost-loss ratio. For a greater than about 0.6, none of the event forecasts 
are useful; for 0.1 < a < 0.5, forecasts of the f4 K events are useful, and for a < 0.1 
only forecasts of large anomalies have value. 
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Figure 1. Ensemble Prediction System control deterministic forecasts of 850 hPa temperature anomalies T 
exceeding four different thresholds over Europe at day 6 for January and February 1998: relative value V plotted 
against cost-loss ratio a for events T < -8 K (solid line), T < -4 K (pecked line),T > +4 K (dotted line) and 

T > +8 K (dash-dotted line). 

From Eq. (8), it is straightforward to determine the range of a for which V is positive 
and also the maximum relative value. For a < 0, Eq. (8) becomes 

v = ( 1  - F) - (0/(l - 0)]((1 - a /a ) ( l  - H). (10) 

V increases with a and is therefore greatest for a = 0. It can be deduced (see Table 2 
and the definitions of H and F) that V is greater than zero for a > b / (a  + b); that is, 
for the forecasts to have value, the probability of the event X occurring when it has not 
been forecast, P(X = Yes 1 forecast = No), must be lower than the user’s a. Similarly, 
for a > 0, 

(1 1) 

In this case, V decreases with increasing a, and is positive for a < d / ( c  + d); users 
will benefit from the forecasts if the probability of X occurring when X is forecast, 
P(X = Yes I forecast = Yes), exceeds a. 

So, maximum value always occurs for a = 0; at this point, the expense of taking 
either of the climatological options (always protect or never protect) is the same: 
climatology does not help the decision maker and the forecast offers the greatest benefit. 
As the cost approaches the limits of 0 and 1, the climatological options become harder 
to beat-the great expense resulting from even occasional incorrect forecasts outweighs 
the small expenditure on the default action. The conditional probabilities of the event 
occurring, given the forecast, determine the range of a for which the forecast system is 
useful. 

v = H - [ ( l  - @/0}(a / l  - a ) ) F .  

The maximum value is given by 

So, skill (Eq. (9)) is related to the usefulness of the forecasts: KS is the maximum relative 
value that can be obtained from the system. Whether this potential maximum value will 
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be achieved depends on the a of the user; the closer a is to 0 the higher will be the value. 
Note that this maximum value is independent of a and 0; if two systems predicting 
different events (with quite different values of 0) have the same KS, then the potential 
maximum value will be the same, but it will occur for different values of a! (equal to the 
respective observed frequencies). 

4. PROBABILITY FORECASTS 

A user receiving forecasts expressed in terms of probabilities must decide on the 
probability threshold at which to take action. Should it be when the event is forecast 
with a probability of, say, 50%, or when the forecast is more certain (perhaps SO%)? Is 
there an optimum probability above which action should be taken? 

In effect, this choice of a threshold probability, pt, converts the probability forecast 
to a deterministic one. Consider those forecasts of a higher probability of the event as 
forecasts that the event will occur and those with lower probability as forecasts that 
the event will not occur. For a given value of pt, the value of the system can then be 
determined in the same way as for a deterministic system. By varying pt from 0 to 1 ,  
a sequence of values for H and F ,  and hence of V ,  can be derived; the user can then 
choose that value of pt which results in the largest value of V .  Note that since V also 
depends on 0 and a,  the appropriate value of pt will be different for different users and 
different weather events. 

Probability forecasts of the temperature events considered in the previous section 
are produced using the EPS. The relative operating characteristic (ROC) (Mason 1982; 
Harvey er al. 1992) is a plot of H against F for a set of threshold probabilities pt 
between 0 and 1 (Fig. 2). The endpoints of the ROC (1, 1 and 0,O) result from the 
baseline actions of always forecasting or never forecasting the event respectively. A 
perfect forecast system, with H = 1 and F = 0, would give a point at the top left-hand 
comer of the graph, so the closer the ROC is to the top left-hand corner the better. 
If a forecast system has no ability to discriminate occurrence of an event from non- 
occurrence, then H and F will always be equal and the ROC for the system would 
lie along the diagonal line H = F .  The area A under the ROC is used as an index of 
the accuracy of the forecast system (Mason 1982; Buizza et al. 1998, 1999). A perfect 
system would have A = 1 .O, while no-skill systems ( H  = F )  would have A = 0.5. The 
area under the ROC of Fig. 2 is given in the caption. The area may be converted to a 
skill score relative to climatology and chance in the usual way (Stanski et al., 1989) as 

(13) 

For each value of pt, the corresponding values of H and F may be used to generate 
a value curve, just as in the deterministic case. The set of curves for T > +4 K is 
shown in Fig. 3. The EPS forecasts have value for most users, although the benefit 
varies substantially between users with different cost-loss ratios. The most important 
feature of Fig. 3 is that the relative value depends crucially on the appropriate choice 
of pt. Users with small a, i.e. relatively large potential losses, will benefit by taking 
action even when the forecast probability is low, while users with high a will obtain 
value by taking action only when the probability of the event is forecast to be high. 
An inappropriate choice of pt can reduce forecast value substantially. For example, a 
decision maker with a! = 0.1 will receive over 40% relative value by acting when the 
EPS probability is 10% or more, but will gain none at all by not acting until the forecast 
probability exceeds 50%. 

Aforecast - Aclimate = 
Aperfect - Aclimate 

- 1 .  ASS = 
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Figure 2. Relative operating characteristic (ROC) for Ensemble Prediction System (EPS) forecasts of 850 hPa 
temperature anomalies T > +4 K over Europe at day 6 for January and February 1998. Curve shows ROC for the 
EPS probability-forecast; the hit rate H and false-alarm rate F for the deterministic control-forecast are denoted 

by x.  The area under the ROC is A = 0.875. 
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Figure 3. Relative value V for Ensemble Prediction System (EPS) forecasts of 850 hPa temperature anomalies 
T z +4 K over Europe at day 6 for January and February 1998. Thin curves show V for various probability- 
thresholds p , ;  the envelope of these curves (heavy solid line) shows the overall relative value of the EPS, obtained 
by choosing the optimal value of pt for each value of the cost-loss ratio a. The relative value of a 'perfect EPS' 

is also shown (dash-dotted line). 
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This example illustrates the importance of providing probability information to 
users: the value of the EPS forecasts depends significantly on the choice of pt and on 
the user’s a. There is no single threshold for which the EPS has value for all users- 
to benefit from the forecasts, different users must use different thresholds. If the EPS 
forecast is reduced to a single deterministic forecast for all users, for instance by using 
the ensemble mean or by choosing an arbitrary threshold, the value to some users will 
be reduced and may even be eliminated. 

A probability-forecast system is said to be reliable if the event occurs on a proportion 
p of those occasions where the forecast probability is p, i.e. the forecasts may be taken at 
face value (Stanski et al. 1989; Murphy 1993). For a reliable forecast-system, maximum 
value for a particular user will be obtained by choosing pt =a. More generally, an 
appropriate value of pt may be chosen to compensate for the forecast bias. 

To provide maximum value to users with small a, the EPS will need to resolve 
equally small probability-thresholds. The variation of value with pt, and the implications 
for ensemble size are discussed in more detail in section 6. 

Maximum value over all values of (Y occurs at a = 0, as for the deterministic case, 
and is given by 

Vma, = max(H - F) = max(KS) KSma,. (14) 
Pt Pt 

Thus for reliable forecasts, maximum relative value is V,, = KS(pt  = 3. 
We have defined V as value relative to the value of a perfect deterministic forecast. In 

practice, the inherent uncertainty in our estimates of the current state of the atmosphere 
mean that perfect deterministic forecasts, and hence perfect relative value ( V  = l),  
are unattainable. An estimate of the potential relative value of the EPS, given current 
analysis uncertainty, can be made by considering the ensemble as a ‘perfect EPS’: 
instead of the EPS being verified against the real outcome, the distribution of solutions 
in the EPS is assumed to be an accurate representation of the potential outcomes. This 
effectively eliminates model errors. The perfect EPS can be evaluated by using one 
ensemble member as the verification rather than the real analysis (Buizza and Palmer 
1998). Alternatively, for the point probability-forecasts studied in the present work, 
scores for the perfect EPS may be derived directly from the forecast probabilities. Let 
the function g ( p )  denote the frequency with which the EPS forecasts a given event with 
probability p. Let p ’ ( p )  be the frequency with which the event occurs when the forecast 
probability is p. These two functions completely specify the performance of the EPS in 
forecasting the event. For example, hit rate Hp,  can be written as 

For a ‘perfect EPS’, p ’ ( p )  = p for all values of p, and the skill and value of the 
ensemble depends only on the distribution of forecast probabilities g ( p ) .  This method is 
statistically more robust than evaluating against a randomly chosen ensemble member. 
(For a large enough ensemble and sample size the two methods will give the same 
result.) 

The relative value of the perfect EPS, Vperf, is shown in Fig. 3. The relative 
value of the real EPS forecasts is about 0.1 below that of the perfect EPS for almost 
all values of (Y, with greater potential gains when LY is small. Just as the difference 
between the relative value V of the EPS and Vped gives an indication of the potential 
for improvement by elimination of model errors, the difference between Vperf, and 
the perfect detemzinisric limit V = 1 indicates the importance of uncertainty of the 
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initial condition in limiting the value which can be expected in practice. In the perfect 
EPS context, Vperf can be improved only by reducing the initial uncertainty, i.e. by 
reducing analysis errors. Future developments in data assimilation are designed to 
lead to better analyses and lower initial uncertainties-this will lead to higher relative 
value. 

5 .  COMPARISON OF DETERMINISTIC AND PROBABILISTIC FORECASTS 

One of the benefits of the ROC is that it allows direct comparison of deterministic 
and probabilistic forecast systems. H and F for the control forecast (Table 3) are plotted 
together with the EPS probability ROC in Fig. 2 for +4 K. The point for the control 
forecast lies below the EPS ROC; since for the same F a greater hit rate is obtained 
using the EPS probabilities, this implies that the control forecasts are less useful than the 
EPS forecasts. This will be true for all users, irrespective of 0 and a, since, if these are 
fixed and F are fixed, V increases with H (Eq. (8)). Although the difference between 
the control point and the EPS ROC in Fig. 2 is small and not necessarily statistically 
significant, comparison of the corresponding value-curves highlights the advantage of 
the probability forecasts over deterministic forecasts of similar quality (Fig. 4). The 
substantial additional skill of the EPS for many users is a result of their being able to 
choose the appropriate value of p t .  This flexibility greatly increases the range of users 
who will benefit from the EPS forecasts. The relative value of a perfect EPS is also 
shown; the improvement over the real EPS is similar for each event, increasing V by 
0.1-0.2 for most users. 

The three points (0, 0) (Hcontrol, Fcontrol) and (1, 1) may be considered to define a 
ROC curve for the deterministic forecast. As for the probability forecast, the accuracy 
of this forecast can then be measured by the area A under the curve (i.e. the area of 
the quadrilateral defined by these points and (1, 0)). It is straightforward to show that, 
for the deterministic forecast, the area skill ASS (Eq. (13)) equals the standard KS skill 
score: 

KS=2A - 1 =ASS. (16) 

The skill of the deterministic control-forecasts and of the EPS probability-forecasts of 
the +4 K anomaly are compared for forecast days 3 to 10 (D3 to D10) in Table 4. 
For the EPS, ASS is substantially higher than KSmax (Eq. (14)), giving the impression of 
greater skill and a larger improvement over the control forecast. A deterministic forecast 
with skill equal to KSmax will still have less value than the probability forecasts for a 
range of a because of the flexibility of varying pt for different users. The difference 
between ASS and KSm, for the ensemble reflects this additional benefit, although ASS 
is difficult to interpret quantitatively. In the following, let us use KSm, rather than ASS 
as an index of EPS skill because of its simple interpretation as the maximum value of 
the ensemble skill. Use of ASS instead would show a greater skill advantage for the EPS 
in the following analysis. 

Comparison of the KS scores for EPS and control show the probability forecasts 
have a substantial advantage at all lead times. Indeed, the DlO probability-forecast is as 
skilful (has the same maximum value) as the D6 control. This gives a measure of the 
benefit of the EPS-for the single deterministic forecast to have the same skill as the 
current EPS at D10, the forecast model would need to be improved until deterministic 
D10 forecasts were as skilful as the present D6 forecasts. This skill advantage is shown 
for all temperature events in Table 4 (missing values indicate where the EPS was more 
skilful than the D3 control; scores are not available for D1 and D2 forecasts). For most 
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Figure 4. Relative values V plotted against cost-loss ratio (r for four 850 hPa temperature anomaly events over 
Europe at day 6 for January and February 1998: (a) T < -8 K, (b) T > $8 K, (c) T 4 -4 K, (d) T > +4 K. Lines 
show deterministic control-forecasts (pecked line); Ensemble Prediction System (EPS) probability-forecasts (solid 

line) and 'perfect EPS' (dash-dotted line). 

TABLE 4. SKILL OF CONTROL FORECAST A N D  EPS PROBABILITY-FORECASTS FOR 850 hPa 
TEMPERATURE ANOMALIES OVER EUROPE FOR FORECAST DAYS 3-10, FOR JANUARY AND 

FEBRUARY 1998*. 
~~~~ ~ 

Forecast day 
Score Event 3 4 5 6 7 8 9 10 

EPSASS T > +4 K 0.953 0.933 0.909 0.875 0.848 0.830 0.810 0.792 
EPS KS,,, T > +4 K 0.794 0.737 0.674 0.602 0.531 0.509 0.480 0.454 
Control KS T > +4 K 0.708 0.625 0.518 0.457 0.406 0.355 0.303 0.274 

Dadv T >+4K 1.59 1.79 2.12 2.85 3.38 3.94 
Dadv T > + 8 K  3.61 4.38 4.91 5.56 
Dadv T <-4K 0.50 0.54 0.77 1.20 1.54 1.95 2.49 
Dadv T < -8K 2.15 2.32 2.78 3.22 3.96 

*See text for details. 

lead-times and events studied here, the EPS has an advantage (Dadv) of 2 4  days over 
the control. This is a considerable difference and highlights the importance of the EPS- 
improvements in deterministic skill of such magnitude are generally achieved only over 
many years of development of all aspects of model and data-assimilation formulation 
(Simmons et al. 1995). 



SKILL AND VALUE OF ENSEMBLE PREDICTION SYSTEM 659 

a 

Figure 5. Variation with cost-loss ratio (r of the relative value V of Ensemble Prediction System (EPS) 
probability-forecasts at day 6 (solid line) and deterministic control-forecasts for different lead-times (day 6, dotted; 
day 5, pecked; day 4, long dashed; day 3, dash-dotted) for 850 hPa temperature anomalies T > +4 K over Europe 

at day 6 for January and February 1998. 

TABLE 5. SKILL A N D  MAXIMUM INCREASE IN VALUE OF EPS D10 OVER CONTROL D3 
FORECASTS OF TEMPERATURE OVER EUROPE 

January and February 1998 
Event KS(D3 control) KS,,,(DlO EPS) Max[V(D10 EPS) - V(D3 control)) 

T < - 8 K  0.688 0.404 
T < - 4 K  0.728 0.343 
T > + 4 K  0.708 0.454 
T > + 8 K  0.648 0.5 14 

0.194 
0.070 
0.110 
0.328 

The analysis of the previous paragraph demonstrated the advantage of the EPS in 
terms of skill or, equivalently, maximum relative value. For different users, the relative 
value of EPS and the control forecasts varies substantially. Figure 5 shows how lead time 
changes value for all users for T > +4 K. One forecast-system is said to be sufficient 
for another if it provides greater value for all users (Ehrendorfer and Murphy 1988). 
It is clear from Fig. 5 that even the D3 control forecast is not sufficient for the D6 
EPS. Table 5 illustrates the sufficiency of the D3 control for the D10 EPS for the four 
temperature-thresholds. For each event, the D3 control skill (maximum value) is, as 
expected, substantially greater than the D10 EPS skill. However, for every event there 
are some users for whom the D 10 EPS has considerably more value than the D3 control. 
The D3 control forecast is not sufficient for the D10 EPS for any of the temperature 
events. 

It is users with low a! who derive the greatest benefit from the increase in value of 
the EPS over the shorter-range control-forecast (Fig. 5). This has particular significance 
when the potential savings from more timely warnings are taken into account. Users 
with more time to prepare for protective action may be able to reduce the cost of taking 
it and so reduce a! towards the region where the EPS has the greatest advantage. 
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Figure 6. Relative operating characteristics (ROCs) for Ensemble Prediction System (EPS) forecasts of 12-hour 
total precipitation exceeding 1 mm (pecked line), 5 mm (solid) and 10 mm (dash-dotted) over Europe at day 5 
for winter 1996/97. Curves are for EPS probability-forecasts calculated using all possible probability-thresholds 
(approximately at 2% intervals). Hit rates H and false-alarm rates F for the deterministic EPS control-forecast 
(lower-case letters) and high-resolution operational forecast (upper case) are also shown (a,A, 1 mm; b,B, 5 mm; 

c,C, 10 mm). 

6 .  THE EFFECT OF ENSEMBLE SIZE ON FORECAST VALUE 

It was shown in section 4 that for a given user, maximum relative value is gained 
when pt is equal to the user’s a. It is, therefore, important to consider the variation of 
V with pt. If small changes in pt lead to significant differences in value, then the EPS 
resolution needs to be sufficient to resolve the required probability-thresholds. 

The relationships between ensemble size, pt and V are illustrated using EPS 
forecasts of precipitation over Europe in the 12-hour period t + 108 to t + 120 (D4.5 to 
D5) exceeding a given threshold. Three events are considered which represent different 
climatological frequencies: total precipitation exceeding 1 mm, 5 mm and 10 mm. 
The EPS forecasts are verified against the t + 12 to t + 24 accumulated-precipitation 
forecasts from the operational deterministic high-resolution (T2 13) ECMWF model; 
results are for 92 cases from winter 1996-97 (Buizza et al. (1999); see their appendix 
for a detailed discussion of this choice of verification data). 

In addition to ensemble size, an important factor in determining an optimal 
ensemble-configuration is the resolution of the forecast model. For a given allocation 
of computing power, a compromise must be reached between ensemble size and model 
resolution (Buizza et al. 1998). Precipitation forecasts are perhaps particularly sensitive 
to resolution. For this reason, the operational deterministic high-resolution (T2 13) fore- 
cast is assessed in addition to the EPS control forecast to give an indication of the effect 
of the reduced EPS-resolution. 

ROCs for the three events are shown in Fig. 6; the area under each curve and the 
maximum relative value of the system are given in Table 6. The EPS has skill for all 
events and the forecasts all have substantial relative value. 
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TABLE 6. EPS PERFORMANCE FOR PRECIPITATION EVENTS 

1 mm 0.289 0.826 0.50 0.338 0.397 
5 mm 0.0552 0.831 0.56 0.218 0.239 

10mm 0.0135 0.794 0.57 0.140 0.190 

For each precipitation amount, the ROC points for both deterministic forecasts lie 
below the corresponding EPS-probability ROC and the maximum value (or skill, KS)  
is substantially lower than that of the EPS. The skill of the high-resolution operational 
forecast is, however, greater than that of the lower-resolution EPS control, indicating 
the potential for improvement to the EPS by using a higher-resolution forecast-model. 
Although the overall value of the EPS is greater than the single high-resolution forecast, 
there are circumstances where the lower-resolution EPS fails to capture an important 
extreme event, whereas an integration run at enhanced resolution provides a successful 
forecast (A. Hollingsworth, personal communication). In such circumstances, while 
a single high-resolution forecast will not always be correct, it can provide valuable 
additional information to forecasters on the potential effect of resolution. 

For the EPS, Vm, is higher for the 5 mm and 10 mm events than for the 1 mm 
threshold, but skill (as determined by ROC area) is lower for the 10 mm event than 
for the other precipitation-thresholds. It is apparent from Fig. 6 that whereas points on 
the ROC are reasonably evenly spaced for precipitation over 1 mm, data for the ROCs 
for 5 mm and 10 mm are increasingly restricted towards the lower-left portion of the 
diagram. If attention is focused on just those parts of the ROC curves where data are 
available for all three precipitation amounts, it is clear that the EPS performance is 
better for heavier precipitation. (For a given false-alarm rate F, the highest hit-rate H is 
achieved for the 10 mm event, and the lowest for the 1 mm event). 

The reason for the restricted coverage of the larger-event ROCs is related to the 
lower observed frequency of the heavier-rainfall events (Table 6) and the values of pt 
used to calculate the values of H and F. If the observed frequency of the event is low 
relative to the forecast pt, and the forecast system is reasonably reliable (i.e. rare events 
are forecast rarely), the great majority of points in the contingency table (Table 2) for 
this pt will be in the No/No cell (cell ‘u’ in Table 2); hence F will be low and H 
will be limited accordingly. To extend the ROC data-points towards the top right of 
the diagram, additional lower-probability thresholds must be considered. In practice, 
the resolution of probability thresholds is limited by the size of the ensemble. For an 
N-member ensemble, all possible hit and false-alarm rates can be calculated by taking 
pt at intervals dpt = l/N. The ROCs in Fig. 6 were calculated using all values of pt 
available from the 5 1-member EPS, i.e. pt intervals of approximately 0.02. Although 
this resolution is sufficient for the relatively frequent 1-mm precipitation event, a larger 
ensemble would be needed to specify the full ROC for the rarer 10-mm event. 

The ROC is often generated using a fixed set of probability thresholds at 10% 
intervals (Stanski et ul. 1989; Buizza and Palmer 1998). This use of a limited set of 
probability thresholds may give a misleading impression of the potential performance 
of the forecast system. The effect is illustrated in Fig. 7 and Table 7 in which the ROCs 
and scores for each precipitation event have been recalculated using dpt = 0.1, rather 
than the full set of probability thresholds used for Fig. 6. There is little effect on the 
ROC for the relatively frequent 1-mm event; the area decreases slightly but Vm,, is 
unchanged. However, the scores for the larger precipitation amounts are substantially 
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Figure 7. As Fig. 6.  but for ROC curves calculated using probability thresholds p ,  at 10 % intervals. 

TABLE 7. EPS PERFORMANCE FOR PRECIPITATION EVENTS (dp, = 
0.1) 

51 members I0 members 
Precipitation threshold ROC area V,,, ROC area V,,, 

1 mm 0.819 0.50 0.800 0.47 
5 mm 0.764 0.51 0.71 1 0.40 

10 mm 0.656 0.31 0.638 0.28 

degraded and give the misleading impression that the 10-mm event is considerably less 
skilful than the 1-mm event. 

The variation of relative value with a is shown for the two sets of probability 
thresholds in Fig. 8. For all precipitation events there is little effect from changing dpt 
for a > 0.1. However, large differences are apparent for smaller values of a. The curves 
are plotted with a logarithmic x-axis so that this can be seen clearly. Although V,,, 
does not increase for dpt = 0.02 for the 1-mm event, there are still substantial gains 
for users with low a: use of the smaller dpt gives values of V up to 20% where the 
dpt = 0.1 probability-thresholds gave no value. The differences in value are notably 
larger for the more extreme events. Also shown in Fig. 8 are estimates of the relative 
value which could be obtained with a sufficiently large ensemble. These estimates 
were derived using a parametrized model of the ROCs of Fig. 6 (Mason 1982; Harvey 
et al. 1992); the method is summarized briefly in an appendix. There is potential for 
substantial improvement for users with low a, particularly for the more extreme events 
(as 0 decreases, so too does the probability threshold pt for maximum value). 

For values of a larger than about 0.1, there seems to be little benefit to be obtained 
solely from increasing the resolution of the probability threshold. However, increasing 
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Figure 8. Variation with cost-loss ratio a! of the relative value V of Ensemble Prediction System (EPS) 
probability-forecasts of 12-hour total precipitation exceeding stated amounts over Europe at day 5 for winter 
1996/97: (a) I mm; (b) 5 mm; (c) 10 mm. V is shown for different resolutions of probability threshold p t :  standard 
10% intervals, dp,  = 0.1 (pecked line); all possible thresholds, dpt = 0.02 (solid line); estimate of potential 
relative value as dp, -+ 0 (dotted line). Also shown is relative value V calculated using ten ensemble-members 

for dp, = 0.1 (dash-dotted line). 

ensemble size may be of value in providing more reliable estimates of forecast prob- 
ability. The effect of ensemble size is examined by using just 10 of the 51 ensemble 
members to calculate H and F for the standard pt thresholds (dpt = 0.1). ROC area and 
maximum value are both reduced (Table 7), and relative value is lower for all users than 
for 5 1 members (Fig. 8). 

These results indicate that increasing ensemble size will bring benefits, both by 
allowing finer resolution of probability thresholds and by giving improved estimates 
of the forecast-probability distribution. The potential-value estimates of Fig. 8, which 
only consider the effect of increasing resolution of dpt, should, therefore, be considered 
as lower bounds to the improvement obtainable with larger ensembles. 

7. CONCLUSIONS 

The EPS is an important component of the operational forecasting capability at 
ECMWF, complementing the operational deterministic forecast with probabilistic infor- 
mation reflecting the uncertainty in the analysed atmospheric state. A simple decision- 
analytic model has been used to study the potential economic value of EPS forecasts of 
temperature and precipitation. 
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The EPS has considerable value throughout the medium range, although different 
users will benefit to a greater or lesser extent, depending on their specific economic 
costs. Comparison of the EPS probability-forecasts with deterministic predictions from 
the control integration demonstrates the advantage of the probabilistic approach (Mur- 
phy 1993). Probability forecasts are generally more useful than deterministic forecasts 
of comparable quality because the user can select a probability threshold appropriate to 
his needs. A forecaster’s arbitrary prescription of such a threshold without knowledge 
of a particular user’s requirements can severely reduce the value of the system to that 
user. 

The value of the operational EPS was compared to that of a ‘perfect EPS’ in which 
model errors are eliminated. The potential improvement in relative value V is 0.1-0.2 
for most users for the four temperature events considered. The substantial difference 
between the relative value of the perfect EPS and the perfect deterministic limit ( V  = 1) 
is an indication of the effect of the initial uncertainty in limiting the value which can 
be expected in practice. If the initial uncertainty can be reduced by improvements to 
the forecast model and data-assimilation system, this will lead to improvements in the 
potential value of the EPS. 

In our point verification, the EPS probability-forecasts have several days’ advantage 
over the corresponding control forecast. In other words, the additional information 
in the EPS, reflecting the uncertainty in the initial conditions, provides a benefit to 
users equivalent to many years’ development of the deterministic forecast-model and 
assimilation-system. In fact, for some users, EPS probability-forecasts for 10 days ahead 
have more value than day-3 deterministic forecasts. 

The analysis presented in the present paper demonstrates the overall benefit of the 
EPS probability-forecasts over a single deterministic forecast. For precipitation fore- 
casts, which may be particularly sensitive to model resolution, the EPS was shown to 
be superior to the higher-resolution T2 13 deterministic forecast. However, the improve- 
ment of the T213 forecast over the T ~ 1 5 9  EPS control indicates the potential benefit 
of increased resolution. Despite the overall benefit of the EPS, there are circumstances 
in which the EPS resolution is too low to capture an important event. Whereas a single 
high-resolution forecast will not always be correct, it can provide valuable additional 
information on the sensitivity of a particular situation to model resolution; it is for 
this reason that a high-resolution deterministic forecast is run operationally at ECMWF 
alongside the lower-resolution EPS. 

Maximum relative value occurs when the cost-loss ratio 01 is equal to the observed 
frequency of the event. For a particular user, the greatest value of a reliable probability- 
forecast is found for threshold probability pt equal to the user’s a. Therefore, users 
with small a will receive maximum benefit only if equally small probability-thresholds 
can be resolved by the EPS. Recent studies of ensemble size (Buizza and Palmer 1998; 
Buizza et al. 1998, 1999) have followed the common practice of using a standard set of 
probability thresholds (at 10% intervals). While some benefit was found for all users 
by using all 51 ensemble-members rather than just 10 to estimate these thresholds, 
a far greater increase in value for small 01 was found by using the full ensemble to 
discriminate smaller probability-thresholds. Further increases in ensemble size will give 
significant additional improvement for low 01, especially for more extreme events. 

Ideally, the weather sensitivity, decision processes and relevant costs of all potential 
users would be known. It would then be straightforward to calculate the overall value 
of the EPS. Proposed changes to the forecast system could be evaluated in terms of 
net benefit, and the effect on any given user could be determined. In practice, little 
is known about the decision-making processes of many weather-sensitive activities 
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(users themselves are often unclear about this information). One possible approach 
(Roebber and Bosart 1996) is to study overall value as a function of various hypothetical 
distributions for a, although the absolute costs of different users and the relative 
importance of different weather-events will also have a significant impact on total value. 

However, until more is known about the spectrum of potential users, it is important 
to be aware of the effect of the EPS on the full range of a. As Roebber and Bosart (1 996) 
pointed out, high values of a are difficult for a business to sustain; also, competition 
between businesses is likely to act to reduce a. The provision of forecasts with longer 
lead-time may also serve to reduce costs (see section 5). Finally, for extreme events, 
potential losses may, in many instances, greatly exceed the cost of protection. The 
advantages of the EPS, and potential benefits of increased ensemble size for low a, 
may thus be of considerable significance. 

Although the cost and losses for a particular user may be difficult to determine, the 
present value-study offers forecast verification in a form relevant to the user’s needs. The 
decision framework, although simple, shows that users will not all feel the same benefits 
of the EPS, nor will they be affected equally by changes to the forecasting system. 
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APPENDIX 

The Gaussian model for the relative operating characteristic 
The relative operating characteristic (ROC) curves presented in the present paper 

have all been produced empirically as plots of hit rate H and false-alarm rate F derived 
from forecast-verification data. Mason (1982) and Harvey et al. (1992) demonstrate that 
a parametrized model of the ROC, derived from signal-detection theory (SDT) provides 
a good fit to such empirical-forecast data. 

The model assumes that information about the occurrence (or not) of an event can 
be represented by a single one-dimensional variable X. Uncertainty about the outcome 
is reflected in case-to-case variations in X, which are given by two fixed probability- 
distributions, one for the distribution of X given the event occurs, &(X) (the signal 
distribution in SDT), and another for the distribution of X given the event does not 
occur, & (X) (the noise distribution). 

For any given value of X, of X (the decision criterion), H and F are then simply 
the areas to the right of X,, under the respective probability density functions (pdfs): 

00 

H = P (X > X, I event occurs) = S,, #s (x) dx 
F = P ( X  > X, I event does not occur) = 

So, as the decision criterion X, varies, sequences of values of H and F are produced 
which trace out the ROC for the system. The model and the ROC are thus defined by the 
distributions &(X) and #s(X). The simple case of both distributions being Gaussian is 
generally found to produce good results (Mason 1982; Harvey et al. 1992). 
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If both distributions are Gaussian (means ps,  pn; standard deviations as, 0,) then 
H and F can be expressed as areas under the standard Gaussian distribution 

where 

z s  = ( X C  - CLs)/as, (A.4) 

with a similar expression for F .  The quantities zs and Zn are related by 

2s = ( a n z n  + /I .n - ~ s ) / a s .  (A.5) 

Thus, a set of values of H and F may be transformed to the corresponding standardized 
Gaussian deviates zs and zn (Eq. (A.3)); the strength of the linear relationship between 
zs and zn (Eq. (AS)) is a measure of the validity of the Gaussian model for the original 
data. Correlation between the transformed variables is greater than 0.99 for all the events 
discussed in the present paper (statistically significant beyond the 1 % level), confirming 
that the Gaussian model is applicable to the EPS data. 

The Gaussian model is completely specified by two parameters, usually chosen as 
the distance between the means of the two Gaussian distributions (normalized by the 
standard deviation of &) and the ratio of the two standard deviations. These may be 
estimated from a set of empirical ROC data. The model may then be used to construct a 
parametrized version of the original ROC, but with any desired resolution of probability 
threshold. In this way, the model may be used to provide an estimate of the potential 
benefit of having finer resolution in dpt. 
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